Two classes of special functions using Fourier transforms of generalized ultraspherical and generalized Hermite polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Classes of Special Functions Using Fourier Transforms of Generalized Ultraspherical and Generalized Hermite Polynomials

Mohammad Masjed-Jamei c a, Wolfram Koepf b a Department of Mathematics, K.N.Toosi University of Technology, P.O.Box 16315-1618, Tehran, Iran, E-mail: [email protected] , [email protected] b Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany, E-mail: [email protected] c School of Mathematics, Institute for Research in Fundamental Science...

متن کامل

Two Classes of Special Functions Using Fourier Transforms of Some Finite Classes of Classical Orthogonal Polynomials

Some orthogonal polynomial systems are mapped onto each other by the Fourier transform. The best-known example of this type is the Hermite functions, i.e., the Hermite polynomials multiplied by exp(−x2/2), which are eigenfunctions of the Fourier transform. In this paper, we introduce two new examples of finite systems of this type and obtain their orthogonality relations. We also estimate a com...

متن کامل

Characterizations of Generalized Hermite and Sieved Ultraspherical Polynomials

A new characterization of the generalized Hermite polynomials and of the orthogonal polynomials with respect to the measure |x|γ(1 − x2)1/2dx is derived which is based on a “reversing property” of the coefficients in the corresponding recurrence formulas and does not use the representation in terms of Laguerre and Jacobi polynomials. A similar characterization can be obtained for a generalizati...

متن کامل

Generalized Hermite Polynomials 1

The new method for obtaining a variety of extensions of Hermite polynomials is given. As a first example a family of orthogonal polynomial systems which includes the generalized Hermite polynomials is considered. Apparently, either these polynomials satisfy the differential equation of the second order obtained in this work or there is no differential equation of a finite order for these polyno...

متن کامل

Sparse Generalized Fourier Transforms ∗

Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2012

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2011-11063-3